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1. Motivation and Objective

The Yakhot-Orszag renormalization group is used to analyze the pressure gradient-

velocity correlation and return to isotropy terms in the Reynolds stress transport

equations. The perturbation series for the relevant correlations, evaluated to lowest

order in the e-expansion of the Yakhot-Orszag theory, are infinite series in tensor

product powers of the mean velocity gradient and its transpose. Formal lowest

order Padd approximations to the sums of these series produce a rapid pressure

strain model of the form proposed by Launder, Reece, and Rodi, and a return to

isotropy model of the form proposed by Rotta. "In both cases, the model constants

are computed theoretically. The predicted Reynolds stress ratios in simple shear

flows are evaluated and compared with experimental data. The possibility is dis-

cussed of deriving higher order nonlinear models by approximating the sums more

accurately.

The Yakhot-Orszag renormalization group provides a systematic procedure for de-

riving turbulence models. Typical applications have included theoretical derivation

of the universal constants of isotropic turbulence theory, such as the Kolmogorov

constant, and derivation of two equation models, again with theoretically com-

puted constants and low Reynolds number forms of the equations. Recent work

has applied this formalism to Reynolds stress modeling, previously in the form of a

nonlinear eddy viscosity representation of the Reynolds stresses, which can be used

to model the simplest normal stress effects. The present work attempts to apply

the Yakhot-Orszag formalism to Reynolds stress transport modeling.

2. Work Accomplished

The modelling of the pressure gradient-velocity correlation and return to isotropy

term in the Reynolds stress transport equation remains an area of active research),2'3

Models will be derived here using the Yakhot-Orszag renormalization group 4 par-

tially along the lines of our previous work 5. The result is a model for the rapid

pressure-strain term of the form proposed by Launder, Reece and Rodi 6 (LRR) and

a model for return to isotropy of the form proposed by Rotta 7 with theoretically

computed constants in good agreement with accepted values. As is usual in inves-

tigations of this sort, the priority of Yoshizawa in deriving a pressure strain model

analytically s must be noted.

The analysis requires some new ideas in renormalization group theory recently

introduced by Yakhot et alg. As Yakhot et al 9 emphasize, the application of the

renormalization group mode elimination formalism to shear flow creates a double

perturbation series in powers of e, the parameter of the isotropic theory, and in
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powers of a dimensionless strain rate, r/= SK/E, where K denotes the turbulence

kinetic energy, e denotes the dissipation rate, and S is a measure of the mean

strain: in Ref. 9, S 2 otr ov___) or_= (_-_z_ + ox.., -_z. • The present analysis also leads to double

expansions of this type, with the powers S n replaced by tensors S (') homogeneous of

degree n in the mean velocity gradient VU and its transpose. It will be convenient to

retain the terminology of Ref. 9 and call this expansion the r/-expansion; when the

distinction is pertinent, the expansion of Ref. 9 will be called a scalar rl-expansion.

The heuristic program of evaluating all scalar amplitudes to lowest order in e

has proven successful in the past: apparently, the e-expansion is an asymptotic

series with a sum given very nearly by its first term 1°. Unfortunately, there is no

analogous basis for truncating the y-expansion. There are fundamental reasons for

this distinction between these expansions. The present y-expansion is tensorial:

successively higher order terms do not introduce merely numerical corrections, but

increasingly complex asymmetries into the theory. Truncation therefore imposes

a possibly inappropriate symmetry or other constraint on the model. Thus, in

Ref. 5 the y-expansion for l;he Reynolds stress r was truncated at second order as

suggested by previous work of Yoshizawa n and Speziale 12. Although this type of

modelling permits unequal l{ormal stresses in a simple shear flow, it is not maximally

asymmetric: for example, in a flow with mean velocity components Ui(xl,x2), a

cubic model including a term 7- --. VU2_TU T + VUVU T_ would permit nonzero r23

in the presence of vanishing OU2/Oxa and OUa/Ox2, an effect which cannot be ruled

out in advance.

Although generalizations la of the Cayley-Hamilton Theorem limit the number

of independent tensors S("), anisotropy and asymmetry cannot exist at all without

some terms of higher order in r/; indeed, truncation at lowest order in 17just produces

a theory of isotropic turbulence. But the series truncated at any higher order can

be unsatisfactory in flow regions in which some components or.(_ ) K/e are large. In

such regions, the truncated series is dominated by its highest order terms. For the

quadratic stress models of Refs. 5, 11, 12, this domination can produce negative

normal stresses in the buffer layers of wall bounded flows. Increasing the order of

truncation obviously exacerbates this problem.

It follows that finite truncation of the rl-expansion is theoretically unsatisfactory.

Yakhot et al9 therefore propose that this expansion must be summed, even if only

approximately, and have suggested a prototype summation in a different context.

It should be noted that the same issues arise naturally in Yoshizawa's formalism,

which also generates infinite series in the mean velocity gradients (and in other

quantities as well) for correlations of interest in turbulence modeling. Yoshizawa

has concluded independently that summation of this series is essential and has also

derived a Reynolds stress transport model by introducing such summations _4.

In this paper, the perturbation series which the Yakhot-Orszag renormalization

group generates for the correlation

Hi j=- ui + uj--
Oxi

(1)
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is summed by a low order Pad6 approximation. Coefficients'are evaluated to lowest

order in the e expansion, but the summation includes effects of all orders in 7. The

result is essentially identical to the "model 1" proposed by Launder, Reece, and

Rodi 6. An entirely analogous treatment of return to isotropy yields a model of the

form proposed by Rotta 7. Combining these models leads to a preliminary Reynolds

stress transport model. The problem of closing the Reynolds stress diffusion terms

is addressed. This problem also leads to an infinite sum.

While it is encouraging that renormalization group methods can be used to derive

familiar models, the goal of this investigation is not limited to providing theoreti-

cal justification for the LRR and Rotta models, which although widely applied are

nevertheless deficient in several well-documented respects 1,2,_. Instead, renormal-

ization group methods together with approximate summation of the _-expansion

can be used to derive higher order and nonlinear corrections to these models in a

systematic fashion. Explicit development of such models is left to future investiga-

tions.

2.1 Analysis of the Pressure Gradient-Velocity Correlation

The analysis will follow Yakhot and Orszag's derivation of turbulence transport

models by renormalization group methods 4. The equation for velocity products is

0 { Ouj Ou,'_ ( Op ff_Pxi)=-

+uoV_U_u_ - 2Uo Oui Ouj (2)
Oxp Oxp

where u0 denotes the kinematic viscosity. The product -(uiOp/Oxj + ujOp/Ox_)

on the right side of Eq. (2) will become the correlation//ij defined by Eq. (1)

following elimination of all fluctuating modes.

Thus, the perturbation series will be written as

II = To + TI +...

where Tn is of order n in u < and all amplitudes are evaluated to lowest order in e.

To lowest order in e and SK/e

2"1 = -_K \ Ox j + -_i ] (3)

in agreement with the analysis of Crow. x6

At the next order in SK/e, in the high Reynolds number limit,

, , 403 [32(°u' ou ) ouj (ou, ou )T2- 105 4 3 4 u \_xp + Oxi]_Xp+4\-_xp+-_xi] OxjJ +(ij)

1 [16 (OUi OUv_ OUj (OUi OUp_ OUv] (°,-- 21 u \Oxp + Oxi] _xp +2\0xp + Ox,] -_xjJ +(ij)
(4)
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where (0) denotes deviatoric part and (i j) denotes index interchange in the preced-

ing term.

The next order will produce a term T3 containing cubic products of velocities u <.

In view of the form of the LRR model, it is reasonable to ask whether a term with

only one gradient, proportional in the high Reynolds number limit to rVU might

occur at this order. Such terms do occur, but they cancel. Evaluation of T3 proves

to require expansions of the projection operators to second order, leading instead

to terms S (3) homogeneous of degree three in the mean velocity gradient and its

transpose. In general, the term T, of order n has the form S (n)(K/e) n. As noted

in the Introduction, it will be imperative to include effects of all orders in SK/E

in the model, but because the terms T,_ involve ever higher order derivatives of

the transverse projection operators, they do not have an obvious law of formation.

Therefore, an exact summation does not appear feasible.

A simple approximate summation is obtained by introducing the perturbation

series 5 for _(0) in the form

//
ou, ouj3 =

+ Ox, ] -u'uj(°) + _ S(n)(gt_)n
n>2

and dropping the quadratic terms. The resulting model,

IIij = -_K k, Oxj + Oxi ] + C÷1 [u-7-_ (°) --0zp- 3 p 0zpJ

ru- jo)OUp+  xup.] '°)+ C+2 [ P Ox_

(o)

(5)

with
16 2

C+1 = _ = .7619 C+2 = _ = .0952 (6)
21 21

agrees with the perturbation series (3) and (4) to terms of order 8 (3) . However,

unlike the explicit quadratic model which results from simply dropping the 0(8 (3))

terms, this model includes effects of all order in SK/e. The consequences of this

fact will be discussed later. This type of summation has also been applied by

Yoshizawa 14. Eqs. (5) and (6) can be compared with Launder, Reece and Rodi's

"model 1", Eq. (5) with the empirically adjusted constants

C+1 = .7636 C+2 = .1091 (7)

In this model, the constants C+1 and C+2 were not chosen independently; instead,

to insure some consistency conditions introduced by Rotta 7, Launder, Reece, and

Rodi set 6

C2 + 8 8C2 - 2
C+I - C+2 -

11 11
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where only the constant C2 is arbitrary. By eliminating C2 between these equations,

there results

8C4-1 -C_2 --6 (8)

which is also satisfied'by the choice of constants in Eq. (6). The LRR model

corresponds to the choice C2 = .4; Eqs. (5) and (6) correspond instead to the

choice C: = 8/21 --, .36.

The approximate summation used to derive Eq. (5) can be systematically gener-

alized to generate an infinite number of models for Hij. For example, suppose that

the perturbation series for _- is introduced into the cubic terms in the perturbation

series instead of in the quadratic terms as above. This substitution wiLl produce a

model which can be written symbolically in the form

H -_ S (1) + S (2) + r(S 0)' + S (2)')

where zS (i)' denotes a sum of matrix products in all possible orders of r and terms

S(0. The requirement that the original series agree to order S (4) with the approxi-

mation when r is replaced by its perturbation series determines this approximation

uniquely.

2.2 The Return to Isotropy Model

The analytical description of return to is0tropy is no less controversial than the

modeling of the fast pressure strain term 3. In the usual approach to turbulence

modeling, in which correlations generated by Reynolds averaging are closed phe-

nomenologically, this process is considered to result partly from the pressure cor-

relation through a "slow" term independent of the mean flow, and partly from the

deviatoric part of the dissipative correlation . --(Vo _V_. _°u
\
/. From this viewpoint, the
¥

analysis in Sect. I is incomplete because it discloses only a term proportional to the

mean velocity gradient, but no slow term. The return to isotropy will be derived

here by renormalization group methods following a suggestion of Yakhot 1_.

From the renormalization group viewpoint, it is natural to investigate the return

to isotropy, even independently of the stress transport equation, by writing the

perturbation series for

Oul

/ ui(k - _)(-iw)uj(4)d_l + (ij) (9)u_ cn + uJ yi- =

This perturbation series differs from the perturbation series for the Reynolds stresses

previously reported 5 only in the occurence of an additional factor -iw in all fre-

quency integrals.

The analysis is straightforward. Only the deviatoric terms require attention be-

cause the part of the correlation proporational to 6ij contributes to the transport

equation for K which has been analyzed by Yakhot and Smith 15. The lowest order

deviator appears at first order in T/; to lowest order in e
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where

(ou, ouj) (10)
T1 = T1 \ Oxj + Oxi /

d 'l 1 Z)
d--7= (11)

In view of the form of the Rotta model, it is reasonable to seek terms at the next

order proportional to uluj. As in Sect. I, such terms do appear, but cancel exactly.

This apparently ubiquitous cancellation was also obtained by Smith and Reynolds is

in an analysis of the e transport equation. Accordingly, the second order analysis

in rl produces quadratic terms in the velocity gradients. Finite truncation of this

series violates the requirement that return to isotropy be independent of the mean

flow. Therefore, we must seek a reasonable approximate summation. The form of

the lowest order term given in Eqs. (10) and (11) suggests

k Ozj + ] v

Despite its triviality, this replacement does produce an approximate sum which

agrees exactly with perturbation theory to lowest order. It therefore can be consid-

ered a type of Pad_ approximation.

At the infinite Reynolds number asymptotic limit

II  =-C -- . : (12)

where, in the Yakhot-Orszag theory, CR = :D/e ~ 1.6. Equation (12) is therefore

simply the standard Rotta model with Rotta constant ~ 1.6 in agreement with an

earlier proposal of Yakhot a_.

A preliminary discussion of higher order summation may be appropriate. By

analyzing the spectral dynamics of the return to isotropy, Weinstock 3 concluded

that the shear and normal stresses relax at different rates. Although this behavior

is obviously not accommodated by the Rotta model, it is consistent with the present

theory: the perturbation series for//' is obtained from the series for T by multiplying

the term of order n by the factor Cne/K for some constant C,. The Cn are all

unequal; therefore, the Rotta model is not exact. Now comparison with the series

for _" shows 5 that relaxation of the shear stress is governed by the linear term S 0),

whereas relaxation of the normal stresses is governed by the quadratic term S (2).

Since C2 _ C1, these stresses relax at different rates. The difference is suppressed

in the Rotta model, which arose in the present formalism by replacing all of the Cn-

byC1.

2.3 Algebraic Reynolds Stress Models

The approximation, due to Rodi 2°, of the Reynolds stress transport equation

by an algebraic model under the conditions of semi-homogeneous flow (negligible

diffusion of _ and T/K approximately constant) takes the form
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ouj ov, (°)PK ¢ uiui(°) = - _ _ + iLjup c_xp ] + II_j + IIij
(13)

where H and H' depend on _" and VU. Explicit solutions for T can be obtained,

at least in principle, for any such approximation 25. Briefly, one introduces a basis

for polynomials in VU, and VU T. The basis contains 11 terms of homogeneity

order n _< 5. Writing r as a sum of these terms with unknown coefficients and

substituting in Eq. (13) leads to the explicit expression

(14)

where HI m) is a scalar function of VU and VU T such that

~ ivui

when IVUI --, co. The assumptions made on the approximate summations require

m + n = 0; thus, -r/K is bounded when SK/e _ oo. For example, the familiar eddy

viscosity formula is replaced in Eq. (29) by a term

g 2

~ -- H(-1)(VV,VUT) (vu + vuT)
E

Pope observed 25 that the coefficients H(-") in Eq. (14) would certainly be in-

tractably complex; although they could be explicitly exhibited by symbolic com-

putation, the result would only pertain to the particular implicit equation for the

Reynolds stresses assumed initially in Eq. (13). Therefore, it is equally reason-

able just to postulate simple forms for the functions H (-n). This type of modeling

could be particularly interesting when applied to the coefficients of the quadratically

nonlinear models of Refs. 5, 11, and 12.

2.4 Discussion

The present analysis of the Reynolds stress transport equation, based on the

Yakhot-Orszag renormalization group and (tensorial) 1?-expansion summation as

suggested by Yakhot et al._, has led to a model transport equation incorporating the

well-known LRR and Rotta models. The analysis gives theoretical support both to

these models and to the constants sometimes used with them. More significantly, it

exhibits the LRR and Rotta models as lowest order approximations, and therefore

also supports their replacement with higher order nonlinear models which would

be deduced by more accurate approximate summations. The consistency of the

analysis with higher order effects like the unequal relaxation rates of shear and
normal stresses has been discussed.

3. Future Plans

The nonlinear eddy viscosity representation of the Reynolds stresses
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2K (ou ou, 
Tij "-- UiUj --- _ 6ij -- Cv_ "_

K3 [C_-a ( OUi OUj \ (o) OUi OU v OUj OUv _ (o) ( OUp OUv _ (o)]
Oxp Oxj Oxp \ Oxi

in which K is the turbulence kinetic energy, E is the dissipation rate, C_, C_1, C_2, C_a

are constants, and (0) denotes deviatoric part, was proposed by Yoshizawa 11 in or-

der to model normal stress effects in shear flows by means of an explicit formula

for the stresses. The significance of this formula is not limited to this property:

Yoshizawa's derivation using a special perturbation expansion, the two-scale direct

interaction approximation, showed that the expansion could be continued to any

order in the mean velocity gradient and thereby exhibited the Reynolds stress ten-

sor as the result of an infinite number of increasingly complex interactions between

the mean velocity field and turbulence. Related expansions are given in Refs. 5, 12.

The infinite expansion which contains Eq. (15) can be written symbolically as

K 2 K 3

r = KAoS ° + _A1S1 + _ E Ai2S_ +"" +
i<N2

Kn+l

E Ai,-,S'_ + "'" (16)
Cn

i<N.

Eq. (16) can be considered a decomposition of the Reynolds stress

T "-- T O -_ T 1 -'J- "'" (17)

where

Kn+l

"r"=.-._ E AinS_ = _ "rr (184)
i_N. i<N.

where S_' denotes a symmetric tensor homogeneous of degree n in the mean velocity

gradient VU and its transpose, Nn denotes the number of linearly independent

terms of order n (so in Eq. (15), N2 = 3), and the Ain are constants.

In an analysis of the Reynolds stress transport equation by renormalization group

techniques 35, we found analogous expansions for the term which governs the return

to isotropy,

H'= e [KTB1Sa +

and for the rapid pressure-strain term

K 3

E Bi2S_ + ""] (19)
i_Nz

H = -2K S 1 + Ca + + Dx
5 e
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K 3

[c,.(s, vv +vvs, )̀ °)
i<N2

+ Di2 (S_iVU + vuTs/_)] + "'" (20)

Suppose that these sums are introduced into the Reynolds stress transport equation

#=H'+H-P+D (21)

where the dot denotes convective derivative, P -- "rVU r +_'UT is production and D

denotes the diffusion term. In order to obtain a Reynolds stress transport equation,

it is necessary to express the sums (19) and (20) in terms of r and _TU. Although

the coefficients A, B, C, D can be explicitly exhibited to any order in perturbation

theory, they do not have an obvious law of formation. Therefore, the sums (19)

and (20) can only be approximated by polynomials in r and VU if some hypotheses

relating the coefficients is introduced. There is no unique hypothesis of this sort,

but the simplest 35 seems to be

Bin�B1 = Ain/Al, n >_ 2

Ci,.,/CI = Di,.,/D1 = Ai,.,/A1, n>_2
(22)

which leads to the Rotta return to isotropy model and to an LRR model for the

rapid term. The approximation expressed by Eq. (22) can be compared to the

summation introduced in an analogous context by Yakhot et-al. _, and to Pad_

approximation: it agrees with the perturbation theory of Eqs. (19), (20) to lowest

order, but includes effects of all order in _TU.

By evaluating more terms of the perturbation series explicitly and introducing

an equation like (8) for coefficients of higher order, a hierarchy of models could be

generated. They would initially be nonlinear in VU, as advocated by Speziaie 33,

but one might introduce the perturbation series for r. r to obtain a model nonlinear

in r a'2. However, the close analogy between Eqs. (19) and (20) and Yoshizawa's

expansion (16) suggests a different approach: namely, use Eqs. (17) and (18) to

replace S_ in Eqs. (19) and (20) by _'_/Ai,. Substitute these modified expressions

and Eq. (17) into the transport equation Eq. (21), treat T/_ as having order ] VU [n,

and separate the terms of like order in [ VU [ in the standard perturbation theoretic

fashion. The result is that the terms z_ in the decomposition (17), (18) themselves

satisfy coupled transport equations.

For simplicity, let us write an approximate system for the v n instead of for the

Tin and assume the most elementary scalar diffusion model. Then the the single

transport equation for _" would be replaced by a system

__n ._ __C_T n .__ C_ (Tn-lvu T "_- rUTh-l) (0)

K 2
+C; (_'n-aUU + vuTz"-') (°) + C_--_Y:Tn, n > 1 (23)

e

Since _- = _ r "_, the system (6) should be constrained to satisfy Crow's condition

and to contain the exact production term following summation over n. Making the
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coefficients C,_, C{', C_', C_; independent of n reduces the system to a model of the

LRR form for r = _ r n.
This conclusion also follows from Leslie's analysis 34 of the direct interaction (DIA)

equations for shear flow. Leslie suggested a perturbative solution for the (tensor)

correlation function and Green's function

u = u ° + u x + ..- (24)
G = Go + G1 + ...

where U n and G n are of the order I VU In, and observed that this expansion is

simultaneously an expansion in powers of the mean strain, and a decomposition into

symmetry types of increasing complexity. This is also a feature of the expansion

(16). Substitution of Eq. (20) into the equations of the direct interaction approx-

imation gives a coupled system for the U '_ and G" in standard fashion. Then in

principle, by integrating each equation of this system over all wavenumbers and

introducing the definitions

we could attempt to obtain coupled transport equations for the 7.n. Unfortunately,

the derivation of equations for single-point quantities from DIA is not entirely

straightforward, and more heuristic methods like two-scale DIA s,14 and renormal-

ization group are required.

The simplest model of this type is a two component model,

2 7"2
r- -_K I = 7"I +

with

_.l = _ CIRT"1 _ 4 K (VU + VU T) + (C I _ 1)('r'VU T + VUT"2) (°)

K s
+ c_ (7"2vv+ vvTT"2)(°)+ c_v--vT.'

8

+_=- c_7.2+ (c,_- 1)(7"1rut+ ruT"')(°)
K 2

+ c_ (7"'vv+ vv_7"')(°)+ c_v--vT" 2
E

(25)

The appearance of r z in the equation for r' is required by the production term

constraint which is violated by direct truncation of the system (20) at the second

order. The properties of this model for simple shear flow, in which OUi/Oxj =

S_il_j2 follow by setting

T 2 =

(o)

(26)
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Then C_ describes the return to isotropy of the shear stress, and C_ the return

to isotropy of the normal stresses. These relaxation rates can be unequal in this

theory, an effect predicted by Weinstock's analysis 3 of the spectral dynamics of the

return to isotropy. Weinstock suggested further that the individual normal stresses

relax at different rates: this effect is not accommodated by the present model, but

could occur in a model in which r 2 is divided into the three tensor components

T_, _-_, 1"_ of Eq. (18).

The inequality of the Rotta constants in the present model can be used to over-

come a defect of models of the LRR type, that in semi- homogeneous flows in which

aij -- r(°)/K is approximately constant, the ratio a11 is too small whereas a12 is

too big 1°. Following Speziale 19, write Eq. (21) as a system of equations for the

ratios aij and set hij = 0. There results,

2a12_ = (C_- 1)- {(C_- 1) -4_[(C_-1) a22+C_a11-4]} U2

all (27)
- (-c_ + 1)+ ,a12

When P/e = -_al_ = 1,

a22 =
(-c_ + 1)+ _a12

i_ 1 C_-1 C_^

4 2 2= (c 1- + (28)all

Eq. (28) shows that setting C'_ < C_ both increases a11 and decreases a12 and

thus improves the agreement between theory and experiment. The trend required

here is consistent with Weinstock's findings 3 that the Rotta constant for the normal

stresses should be smaller than the shear constant and should take values close to

1.0.

The inequality of the coefficients describing the rapid terms affects the behavior

of the model under rapid distortion. The rapid distortion analysis of passively

strained turbulence predicts that a one-component limit state is reached in which

"rij -- 2KSilSjl, _ = SK/E ---) oo and P/_ is finite 21. Whether or not this limit

can in fact occur as an asymptotic state, a stress mode| should accommodate it

because it can exist approximately in steady flows as a "spatial transient" in strongly
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inhomogeneous regions of very high convective or diffusive transport 17. Moreover,

models of the LRR form do not capture the transient evolution of rapidly distorted

flows well. Let us assume that all model coefficients are functions of the "state"

of turbulence, following Shih and LumleyZ; the precise parametrization of the state

will be left to future investigations. From Eq. (13), it is evident that P/E = -rla12

will be of order 77in the one-component state in which all = 4/3, a_ = -2/3 unless

__ 4
2 (C_-I) +_C] = 153

in this state. But Eq. (13) also shows that all = 4/3, a22 = -2/3 requires

C_ -,_0, C_ _0

in this state. These conditions are inconsistent in a model in which C_ = C[ and

C] = C_, but are clearly consistent with the present proposal.

The advantages of this model are consistency with a systematic perturbation

theory, the possibility of unequal relaxation rates for normal and shear stresses

in relaxing strained turbulence, improved agreement with experimental data for

universal ratios in simple shear flows, and the possibility of accommodating the

one-component limit of rapid distortion theory.
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